FR2962

Fédération de Recherche Mathématiques des Pays de Loire

FR CNRS 2962

Christian Urech

Date début de publication
Date fin de publication
lien plus
Plus ....
French

Le groupe de Cremona en n-variables est le groupe des transformations birationnelles de l’espace projective de dimension n. En 2006, Julie Désérti a démontré que tous les automorphismes du groupe de Cremona en deux variables sur le corps des nombres complexes sont donnés par conjugaison, à automorphisme du corps de base prés. Ce résultat est aussi vrai pour le groupe des automorphismes polynomiaux du plan. Let but de ce projet est de généraliser ces résultats vers deux directions. D’abord on essaye de redémontrer le théorème de Déserti avec des techniques différentes pour que la preuve marche aussi pour d’autre corps de base, notamment en charactéristique positive. Après, le but est de généraliser le théorème de Déserti pour des groupes de Cremona en plus que deux variables. Pour rendre la question plus accessible on se concentra d’abord sur les automorphismes des groupes de Cremona qui sont continu par rapport à la topologie de Zariski et par rapport à la topologie euclidienne.

Christian Urech a obtenu son doctorat en cotutelle entre l’université de Rennes 1 et l’université de Bâle sous la direction de Serge Cantat de Jérémy Blanc, en 2017. Il recherche les structures des groupes de Cremona avec des méthodes de la géométrie birationnelle, de la théorie des actions des groupes algébriques et de la théorie géométrique des groupes. Depuis Janvier 2018 il est postdoc à Imperial College London sous la direction de Paolo Cascini.

Date début de l'évènement
Date de fin l'évènement
Support

Kristin Shaw

Date début de publication
Date fin de publication
lien plus
Plus ....
French
Date début de l'évènement
Date de fin l'évènement
Support
Parrain

Hideyuki Ishi

Date début de publication
Date fin de publication
lien plus
Plus ....
French

HIDEYUKI ISHI est un éminent mathématicien japonais, professeur à l'Université de Nagoya, spécialiste de l'analyse harmonique sur les cônes convexes, des groupes de Lie et des algèbres(de Jordan, de Vinberg, $j$-algèbres) liées à ces cônes ainsi que de la théorie de représentations sur ces structures.

Il collabore avec Piotr Graczyk depuis 2010, sur les applications de son domaine dans les statistiques mathématiques sur les matrices, et surtout pour les lois de Wishart, les analogues matriciels des lois $\chi^2$. Cette collaboration a apporté la publication mentionnée ci-dessous.

Nous travaillons actuellement sur les matrices de Wishart sur les cones liés aux graphs de type A_n et 3 pré-publications sont en cours de préparation:

[GIM] P. Graczyk, H. Ishi, S. Mamane, Riesz and Wishart distributions on the cones related to A_n graphs, preprint(2016), 54p.
[GIMO] P. Graczyk, H. Ishi, S. Mamane, H. Ochiai, ON LETAC-MASSAM CONJECTURE, preprint(2016), 12p.
[GIK] P. Graczyk, H. Ishi, B. Kolodziejek, Variance Function of Wishart Exponential Families on Homogeneous Cones, preprint(2016), 10p.

Nous voudrions continuer, de façon intensive, notre collaboration avec H.Ishi. Notre but sera de rechercher une théorie analytique et statistique universelle des matrices aléatoires de Wishart sur les cônes résultant des modèles graphiques, une branche moderne et importante des statistiques mathématiques. Nous envisageons d'exploiter l'approche via les applications quadratiques, introduite et développée dans [GI].

L'article [GIM], en préparation, est consacré à la classe très importante des cônes graphiques non-homogènes, les cônes liés aux graphes A_n. Les articles [GIMO] et [GIK] traitent les thèmes importants en statistiques multivariées: la classification des toutes les lois de type Wishart et leur fonction de variance.

L'objectif principal du séjour de H. Ishi au LAREMA à Angers sera de terminer la rédaction de ces travaux.

Date début de l'évènement
Date de fin l'évènement
Support
Parrain

Benjamin Collas

Date début de publication
Date fin de publication
lien plus
Plus ....
French

Après avoir caractérisé l'action du groupe de Galois de Q sur l'inertie champêtre cyclique des espaces de modules de courbes pointées (cf. les articles [1] et [2]), nous souhaitons maintenant procéder à une étude semblable pour des groupes d'inertie non cycliques (abéliens ? résolubles ? ...). Afin d'initier cette recherche, je souhaite inviter Benjamin Collas (postdoc à Bayreuth) au Mans pendant une semaine.

[1] B. Collas & S. Maugeais, Composantes irréductibles de lieux spéciaux d'espaces de modules de courbes, action galoisienne en genre quelconque, Annales de l'Institut Fourier, 2014 [2] B. Collas & S. Maugeais, On Galois Action on Stack Inertia of Moduli Spaces of Curves, 2014 (25 pages, soumis).

Date début de l'évènement
Date de fin l'évènement
Support

Oleg Chernoyarov

Date début de publication
Date fin de publication
lien plus
Plus ....
French

Oleg Chernoyarov is professor of Moscow Power Institute and works in statistical radiophysics. The goal of his visit is to continue the cooperation started 6 years ago in the field of detection and estimation of signals observed in different noises. It is supposed to study stochastic models related with GPS-localization and to describe the errors of estimation in the case of corresponding hidden Markov models .

Date début de l'évènement
Date de fin l'évènement
Support

Hisaaki Endo

Date début de publication
Date fin de publication
lien plus
Plus ....
French

Hisaaki Endo est un expert dans la topologie des variétés de dimension 4, en particulier dans la théorie des fibrations de Lefschetz et ses relations avec le mapping class group.

La collaboration de H. Endo et A. Pajitnov porte sur la théorie de Morse-Novikov pour les variétés de dimension 4, ainsi que sur les variétés de Inoue généralisées, introduites récemment dans nos prépublications.

Date début de l'évènement
Date de fin l'évènement
Support
Parrain

Martin Wolf

Date début de publication
Date fin de publication
lien plus
Plus ....
French

Martin Wolf works in the Department of Mathematics at the University of Surrey since 2011. He is a member of the « Fields, Strings, and Geometry Group ».

He has got a PhD in Mathematical Physics from the Leibniz Universität Hannover. He holds also a Diplom (MSc by research) and a Vordiplom (BSc) in Physics both of which from the Technische Universitaet Dresden.

Prior to his appointment in Surrey, he was a Senior Research Fellow and College Tutor at the Wolfson College in Cambridge, an STFC Research Fellow at the University of Cambridge, and a Research Associate at the Imperial College London. His current research ranges from formal areas in mathematics to applied areas in theoretical/mathematical physics all of which centre around geometry:
- Twistor Geometry and Applications to Differential Geometry
- Higher Gauge Theory and Category Theory, and Membranes in String and M-Theory
- Integrability and Hidden Symmetries in String and Gauge Theory
- String Theory/Gauge Theory Dualities
- Instantons and Solitons
- Supergravity Theories
- Geometry, Monge-Ampere Structures, and Fluid Dynamics

For full details, please visit Dr Wolf's home page
http://personal.maths.surrey.ac.uk/st/M.Wolf/

He has a collaborating with Prof V Roubtsov for a couple of years. Dr J McOrist (Surrey), Prof V Roubtsov, Prof I Roulstone (Surrey), and Dr M Wolf are currently working on a project dealing with Monge-Ampere structures in fluid dynamics. In particular, we combine ideas from geometry such as complex differential geometry, higher (categorified) differential geometry, and twistor geometry to unravel the geometric properties of Monge-Ampere type equations arising in the study of the Navier-Stokes equation. Ultimately, we would like to understand how the fluid dynamics is governed by the underlying geomety. The purpose of Dr Wolf's visit is to discuss and make further progress on this project.

Date début de l'évènement
Date de fin l'évènement
Support

Alexander Veretennikov

Date début de publication
Date fin de publication
lien plus
Plus ....
French

Alexander Veretennikov est professeur de mathématiques à l'Université de Leeds (UK). Il est un probabiliste et statisticien, son domaine d’expertise contient les équations différentielles stochastiques et approximations ; processus de Markov, estimations paramétriques, grandes déviations. Il est un expert très reconnu à l’échelle internationale dans le domaine du filtrage et statistique des processus.

Lors de sa visite on va travailler sur les deux sujets ci-dessous en statistique des processus stochastiques :

  • stabilité́ d'un filtre non-linéaire optimale par rapport à des petites perturbations sur les paramètres du modèle ;
  • stabilité d’un filtre optimal par rapport aux données initiales erronées perturbées par les bruits fractionnaires.
Date début de l'évènement
Date de fin l'évènement
Support
Parrain

Willemn van Zuijlen

Date début de publication
Date fin de publication
lien plus
Plus ....
French

Nous travaillons sur le modèle d'une marche aléatoires faiblement auto-évitante plongée dans un potentiel à queue lourde. Nous considérons donc une marche aléatoire simple sur le réseau Z^d à temps continu. Cette marche est soumise à deux effets antagonistes. Elle est d'une part faiblement auto-évitante, ce qui signifie qu'elle reçoit une pénalité énergétique à chaque fois qu'elle retourne en un site qu'elle a déjà visité. Ce mécanisme induit une auto-répulsion de la marche et va augmenter sa dispersion. D'autre part, la marche interagit avec son environnement qui est constitué d'un champs de variables aléatoires positives indépendantes, identiquement distribuées et localisées en chacun des sites de Z^d. Ces variables aléatoires sont à queues lourdes, ce qui signifie qu'un petit nombre parmi elles ont des valeurs beaucoup plus grandes que toutes les autres. A chaque fois que notre marche aléatoire visite un site de Z^d, elle se voit attribuer un prix énergétique égal à la valeur de la variables située sur ce site. Ce second mécanisme a clairement un effet antagoniste au précédent. En effet, pour maximiser sa récompense énergétique la marche va se concentrer sur les sites à fort potentiel ce qui restreindra fortement sa dispersion. De cette compétition, nait l'espoir d'observer de nouveaux phénomènes de localisation partielle d'une marche aléatoire.

Date début de l'évènement
Date de fin l'évènement
Support

Wolgang Koenig

Date début de publication
Date fin de publication
lien plus
Plus ....
French

Nous travaillons sur le modèle d'une marche aléatoires faiblement auto-évitante plongée dans un potentiel à queue lourde. Nous considérons donc une marche aléatoire simple sur le réseau Z^d à temps continu. Cette marche est soumise à deux effets antagonistes. Elle est d'une part faiblement auto-évitante, ce qui signifie qu'elle reçoit une pénalité énergétique à chaque fois qu'elle retourne en un site qu'elle a déjà visité. Ce mécanisme induit une auto-répulsion de la marche et va augmenter sa dispersion. D'autre part, la marche interagit avec son environnement qui est constitué d'un champs de variables aléatoires positives indépendantes, identiquement distribuées et localisées en chacun des sites de Z^d. Ces variables aléatoires sont à queues lourdes, ce qui signifie qu'un petit nombre parmi elles ont des valeurs beaucoup plus grandes que toutes les autres. A chaque fois que notre marche aléatoire visite un site de Z^d, elle se voit attribuer un prix énergétique égal à la valeur de la variables située sur ce site. Ce second mécanisme a clairement un effet antagoniste au précédent. En effet, pour maximiser sa récompense énergétique la marche va se concentrer sur les sites à fort potentiel ce qui restreindra fortement sa dispersion. De cette compétition, nait l'espoir d'observer de nouveaux phénomènes de localisation partielle d'une marche aléatoire.

Date début de l'évènement
Date de fin l'évènement
Support